A gentle introduction to community detection

Davin Choo

DSO National Laboratories
CFL1

10th November 2016

Outline

© Overview
© Preliminaries

© Methods
@ Graph partitioning
@ Hierarchical clustering
o Partitional clustering
@ Spectral clustering

@ Touch-and-go

© Going further

Overview

What is community detection?

¥ 09cAT 4.1 [sals
Pl oy Gotasarces wares Fots e e
@ ST
quey | Rt ot s v st |G Cell phone
B e ey P e intercepts
Gt -~ Links to
Purchases of interc AR al-gaeda
G heddd bombmaking
7 material maieiagm <
Possible
safe-house
Informant
reports
resid
Visits to
primary school
Civilian \ S oy
activities o
Bombmaking
discussions over
the Internet
activities

G

Source: http:

//www.prweb.com/releases/stopterrorism/bobcatrelease41/prweb711224 . htm

http://www.prweb.com/releases/stopterrorism/bobcatrelease41/prweb711224.htm

Overview

What is community detection?

Goal Quantitatively define a community
Hope The quantitative definition captures the qualitative
objective you have in mind

Difficulty Clustering is not a well-defined problem.
Metrics are usually problem specific.
Most clustering formulations are NP-hard

Preliminaries

Partitions vs. Covers

N\

Partition: No overlap. Each vertex only belong to 1 group
Cover: Overlaps allowed. Can have multiple membership
Union of either gives us all the vertices

For this talk, will focus on partition

Preliminaries

Partitions vs. Covers

o Partition: No overlap. Each vertex only belong to 1 group
@ Cover: Overlaps allowed. Can have multiple membership
@ Union of either gives us all the vertices

@ For this talk, will focus on partition

Preliminaries

What do we need?

@ A graph - n vertices, m edges

o Unweighted graph: Sparse

o Weighted graph: Weights cannot be too homogeneous
@ Some concept of measure (see examples below)

o Local measure: "Goodness” of a cluster

o Global measure: " Goodness” of an overall partitioning
@ For some algorithms,

o Number of clusters k
o A threshold value d

Preliminaries

A possible classification of different approaches

Local Form maximal groups that maintain a certain
property (e.g. variants of cliques)
Global Maximise global partition based on a criteria
(e.g. modularity)
Vertex similarity Group vertices based on how similar they are with
respect to certain feature(s)
(e.g. distance in point cloud representation)

Preliminaries

Degree and cluster density

o For a vertex v in cluster C, deg(v) = int¢ + ext¢
@ For a cluster C with n. vertices,

o intC =3 _cintS and ext® = Z;vec extS

o Intra-cluster density §;,:(C) = ’Ef)

2

o Inter-cluster density dext(C) = nc_‘(?;tfnc)

@ Intuitively, a cluster should be a set of vertices with high
intra-cluster density and low inter-cluster density

Preliminaries

Quality function

e Evaluate ‘goodness’ of a partition: Q(Partition) — Value

o Most popular: Modularity
deg(v;)d
° Q 2m v,',VjGV(A" € meg))
A = Adjacency matrix
o Compare partitioning in actual graph against a null model
(randomly distribute edges).

o Higher modularity value = Better community structure (?)

1{v; and v; same cluster}

Preliminaries

The plan for today

Graph partitioning (Kernighan-Lin, Spectral bisection)
Hierarchical clustering (Agglomerative, Divisive)
Partitional clustering (k-means)

Spectral clustering

Due to time constraint,
@ Details and examples only for some methods
e We can discuss in-depth after the talk :)

Methods
©00000000

Graph partitioning

Goal Cut up the graph into 2 parts

Pros Can be efficient and fast

Cons Not natural to always cut into 2.
Need to know number of clusters k

Some methods can be extended to allow multiple cluster cuts, but
those methods have poorer run time.

Methods
0@0000000

Kernighan-Lin (1970)

@ For now, consider only single element swaps!

e Gain of moving element x (e.g. from A to B):
D(X) = Z(u,x)eA W(u, X) - Z(V,X)GB W(V7 X)

e Gain of swapping 2 items (e.g. a€ A, b € B): D(a,b) =
D(a)+ D(b) —2xw(a, b)

In general, works with any subset size. Larger subsets = slower run time

Methods
[e1e] Yololelelele]

Kernighan-Lin (1970)

Algorithm 1 Kernighan-Lin(G = (V,E))

1: Initialise partitions A and B

2: loop > Store copy of originals A, B somewhere
3: fori=1,.., ndo > Modify working copies of A and B
4: Compute D(x) for all x € V

5: a, b < argmax,c pep{D(a, b)} > Swap a and b
6: S[i] « (a, b), g[i] < D(a, b) > Record for later
7 end for

8: if argmax, S, g[i] > 0 then > Best prefix changes
o: Permanently apply changes S[1], ..., S[k] to originals

10: else

11: return A, B

12: end if

13: end loop

Methods

000e00000

Kernighan-Lin (1970) tracing: 1/4

Cutsize=2+3+5=10

D(a) = 4 D(d) =2
D(b) = —5 D(e) = -3
D(c) =1 D(f) = -1

is the largest — Swap a and f

Methods

0000e0000

Kernighan-Lin (1970) tracing: 2/4

Cutsize=6+1=7

is the largest — Swap b and e

Methods

00000e000

Kernighan-Lin (1970) tracing: 3/4

Cutsize=3+4=7

A
// 6 \\\
' (e .
\\ 5 /l 3
\\ C /
\\\ . ’ 4
D(f) = —11
D(e) = -3
D(c) = —1 D(b) = —3

is the largest — Swap a and ¢

Methods
000000e00

Kernighan-Lin (1970) tracing: 4/4

@ Since D(a,f) =3, D(b,e) =0, and D(b,e) = —1,
the best prefix sum gives us either the 2" or 3" graph
@ Both yield cut size of 7

Methods
000000080

Spectral bisection

e (Unnormalized) Laplacian matrix L=D — A
D = diagonal degree matrix
A = adjacency matrix
@ If G is connected, smallest eigenvector A\; of L is 0
o Fiedler vector (1973):
Eigenvector V5 corresponding to 2"¢ smallest eigenvalue \;
@ Bi-partition using Fielder vector by

o Sign of values in V, (positive vs. negative)
o Average of values in V, (above vs. below average)

Methods
00000000e

See IPython notebook

Methods

Hierarchical clustering

Goal Given a vertex/cluster similarity metric, iteratively
join or split up vertices

Pros Do not assume k

Cons Hierarchy may not be natural.
Similarity computation may be expensive

Dendrogram is a useful way of visualising outputs of hierarchical
clustering methods.

Methods

For a suitable metric f

Agglomerative (Bottom-up):
@ Initialise every vertex as own cluster
@ Compute f(i,j) for clusters i and j (may set —oc if no edge)
© Combine clusters argmax(; jyf(i, ;) with highest f score.
©Q Repeat previous 2 steps until only 1 cluster remain
Divisive (Top-down):
@ Compute f(-) for all edges
@ Remove argmax,f(e). Handle ties randomly
© Repeat previous steps until no more edges

Quality of split depends on f, but f cannot be too expensive!

Methods
00®00

Agglomerative (Bottom-up)

Ways to combine clusters C; and C:

@ Single-linkage (min):

f(G,G) = ieg]jigq f(i,J)

e Complete-linkage (max):

f(G,G) = jedax. f(i,))

o Average-linkage (avg):
1
¢ _ i
(ClaC2) ’C1|‘C2’ E (’7])

i€eC,jeC

Methods

Divisive (Top-down)

One popular algorithm: Girvan and Newman (2002)
@ Lots of modifications and extensions

@ Their metric f is the concept of betweenness
Roughly: How frequent an edge is involved in “some process'

3 variants of edge betweenness

@ fi(e): Geodesic edge betweenness
shortest paths between all vertex pairs that include edge e

@ f»(e): Random-walk edge betweenness
How likely is e involved in a random walk from s to t?

@ f3(e): Current-flow edge betweenness
Put voltage across 2 vertices — Kirchoff's equations.
f3(e€) = Average current of e across all vertex pairs.

Equations of f, and f3 shown to be equivalent.

Methods

Dendrogram example

oNISINIQ

Agglomerative

(0 (2 () ’

Methods

Partitional clustering

Goal Given a distance metric, separate vertices into
clusters based on some cost function involving
distances between points in a cluster, or points to a
cluster centroid

Pros Fast convergence

Cons Need to know k. Sensitive to initialisation

Methods

k-means

Iteratively improve from random initialisation of k centroids
Q Assign vertex to closest centroid
@ Update centroid to average coordinate of all assigned vertices

© Repeat previous steps until convergence

@ A special case of Expectation-Maximisation (EM) algorithms
@ Multiple ways to define convergence (can be a mixture):
Fixed number of iterations

Assignments to clusters did not change

Clusters did not change positions

Decrease in the sum of distances from vertices to assigned
centroids is below a threshold

Methods

See IPython notebook

Methods

Spectral clustering

Goal Using a similarity metric, partition sets into clusters
using eigenvectors of matrices

Pros Induced metric space tends to reveal clustering
properties better

Cons Computation of eigenvalues and eigenvectors may be
expensive for large graphs

@ Strongly related to perturbation theory, graph cuts, etc.

e Can view as a non-linear graph transformation /
dimension-reduction preprocessing step before executing
standard techniques like k-means

@ Unnormalised Laplacian matrix L = D — A (Fiedler)

@ Symmetric normalised Laplacian matrices L = [— D~:AD"3
(Andrew Ng, Michael Jordan, Yair Weiss, etc.)

Methods
oeo

Spectral clustering with unnormalised Laplacian

@ Compute eigenvectors and eigenvalues of Laplacian L=D — A
@ Pick k = argmax;_p3 ,|A\i — Ai1]

© Graph transformation:
Form new matrix M = (V4, Vs, ..., Vi) € R™k

@ Run k-means on M, treating each row as a point

© Cluster original points according to k-means results on M

Methods

See IPython notebook

Touch-and-go

Modularity

Popularised by Newman and Girvan
Reca” mOdUIarity:Q =L (Aij — M)l{w and v; same cluster}

2m Zavp, v EV om

Assumption: Higher @ = Better partition

Optimize @ to find best partition via methods like greedy
agglomeration, simulated annealing, etc.
Caveat:

e The assumption doesn't always hold

e “Modularity maximum of a graph reveals a significant
community structure only if it is appreciably larger than the
modularity maximum of random graphs of the same size and
expected degree sequence.”

e See survey paper, Section IV. C. ‘Limits of modularity’

Touch-and-go

Dynamic methods

@ Spin models
e Popular model in statistical mechanics: Potts model
o Each vertex can hold a different state/spin
e Goal: Minimise energy H based on neighbour interactions
@ Random walk
o Community structures have high density of internal edges
e Random walkers spend long time within the same community

Note: Not dynamic in the sense of a changing graph

Touch-and-go
Statistical inference methods

Find best hypothesis that fits actual graph topology
Bayes theorem: P(©|D) = L P(D|©)P(O)

©: Parameters/hypothesis

D: Data/Actual graph

Z: Normalizing constant (usually hard to compute)

Methods usually find © that maximise P(D|©).
Example: Planted partition model (Hastings, 2006)

Touch-and-go

Planted partition model (Hastings, 2006)

Input Graph G, number of clusters k, p;, and pout
Solve argmaxp,ition ¢, P(G1qi) via belief propagation

Output Most likely partition g*
@ pin: Probability that vertices in same group are linked
@ pout: Probability that vertices in different groups are linked

@ Notice similarity to spin model approach.

Going further

What's next?

Today:
@ Graph partitioning:
Kernighan-Lin, Spectral bisection via Fiedler vector

@ Hierarchical clustering
Agglomerative, Divisive (Girvan and Newman)

@ Partitional clustering: k-means

@ Spectral clustering with unnormalised Laplacian
Other interesting directions:

e Finding covers (e.g. clique percolation)

@ Multiresolution and cluster hierarchy

@ Detection of dynamic communities

Going further

How to develop a clustering algorithm?

No single best algorithm for all problem settings.

@ Make good observations in your problem domain:
Construct and study a few graphs, extract insights, etc.

@ Formalise the observation quantitatively
@ Find ways to optimise

@ Test and check that your quantitative measure correctly
reflects your qualitative goal

Further reading

@ Community detection in graphs

https://arxiv.org/pdf/0906.0612v2.pdf

@ A Tutorial on Spectral Clustering

https://arxiv.org/pdf/0711.0189v1.pdf

@ On Spectral Clustering: Analysis and an Algorithm

http://ai.stanford.edu/~ang/papers/nipsO1-spectral.pdf

Going further

https://arxiv.org/pdf/0906.0612v2.pdf
https://arxiv.org/pdf/0711.0189v1.pdf
http://ai.stanford.edu/~ang/papers/nips01-spectral.pdf

	Overview
	Preliminaries
	Methods
	Graph partitioning
	Hierarchical clustering
	Partitional clustering
	Spectral clustering

	Touch-and-go
	Going further

