
Overview Preliminaries Methods Touch-and-go Going further

A gentle introduction to community detection

Davin Choo

DSO National Laboratories
CFL1

10th November 2016

Overview Preliminaries Methods Touch-and-go Going further

Outline

1 Overview

2 Preliminaries

3 Methods
Graph partitioning
Hierarchical clustering
Partitional clustering
Spectral clustering

4 Touch-and-go

5 Going further

Overview Preliminaries Methods Touch-and-go Going further

What is community detection?

Source: http://www.prweb.com/releases/stopterrorism/bobcatrelease41/prweb711224.htm

http://www.prweb.com/releases/stopterrorism/bobcatrelease41/prweb711224.htm

Overview Preliminaries Methods Touch-and-go Going further

What is community detection?

Goal Quantitatively define a community

Hope The quantitative definition captures the qualitative
objective you have in mind

Difficulty Clustering is not a well-defined problem.
Metrics are usually problem specific.
Most clustering formulations are NP-hard

Overview Preliminaries Methods Touch-and-go Going further

Partitions vs. Covers

Partition: No overlap. Each vertex only belong to 1 group

Cover: Overlaps allowed. Can have multiple membership

Union of either gives us all the vertices

For this talk, will focus on partition

Overview Preliminaries Methods Touch-and-go Going further

Partitions vs. Covers

Partition: No overlap. Each vertex only belong to 1 group

Cover: Overlaps allowed. Can have multiple membership

Union of either gives us all the vertices

For this talk, will focus on partition

Overview Preliminaries Methods Touch-and-go Going further

What do we need?

A graph - n vertices, m edges

Unweighted graph: Sparse
Weighted graph: Weights cannot be too homogeneous

Some concept of measure (see examples below)

Local measure: ”Goodness” of a cluster
Global measure: ”Goodness” of an overall partitioning

For some algorithms,

Number of clusters k
A threshold value d

Overview Preliminaries Methods Touch-and-go Going further

A possible classification of different approaches

Local Form maximal groups that maintain a certain
property (e.g. variants of cliques)

Global Maximise global partition based on a criteria
(e.g. modularity)

Vertex similarity Group vertices based on how similar they are with
respect to certain feature(s)
(e.g. distance in point cloud representation)

Overview Preliminaries Methods Touch-and-go Going further

Degree and cluster density

v

C

For a vertex v in cluster C , deg(v) = intCv + extCv
For a cluster C with nc vertices,

intC =
∑

v∈C intCv and extC =
∑

v∈C extCv
Intra-cluster density δint(C) = intC

(n
2)

Inter-cluster density δext(C) = extC

nc ·(n−nc)
Intuitively, a cluster should be a set of vertices with high
intra-cluster density and low inter-cluster density

Overview Preliminaries Methods Touch-and-go Going further

Quality function

Evaluate ‘goodness’ of a partition: Q(Partition) → Value

Most popular: Modularity

Q = 1
2m

∑
vi ,vj∈V (Ai,j − deg(vi)deg(vj)

2m)1{vi and vj same cluster}
A = Adjacency matrix
Compare partitioning in actual graph against a null model
(randomly distribute edges).
Higher modularity value ⇒ Better community structure (?)

Overview Preliminaries Methods Touch-and-go Going further

The plan for today

Graph partitioning (Kernighan-Lin, Spectral bisection)

Hierarchical clustering (Agglomerative, Divisive)

Partitional clustering (k-means)

Spectral clustering

Due to time constraint,

Details and examples only for some methods

We can discuss in-depth after the talk :)

Overview Preliminaries Methods Touch-and-go Going further

Graph partitioning

Goal Cut up the graph into 2 parts

Pros Can be efficient and fast

Cons Not natural to always cut into 2.
Need to know number of clusters k

Some methods can be extended to allow multiple cluster cuts, but
those methods have poorer run time.

Overview Preliminaries Methods Touch-and-go Going further

Kernighan-Lin (1970)

x

a b

1

2

3

4

5

6

A B

For now, consider only single element swaps1

Gain of moving element x (e.g. from A to B):
D(x) =

∑
(u,x)∈A w(u, x)−

∑
(v ,x)∈B w(v , x)= 2 + 3− 1 = 4

Gain of swapping 2 items (e.g. a ∈ A, b ∈ B): D(a, b) =
D(a) +D(b)− 2 ∗w(a, b)= (5− 4) + (5− 6)− 2 ∗ (5) = −10

1In general, works with any subset size. Larger subsets ⇒ slower run time

Overview Preliminaries Methods Touch-and-go Going further

Kernighan-Lin (1970)

Algorithm 1 Kernighan-Lin(G = (V,E))

1: Initialise partitions A and B
2: loop . Store copy of originals A,B somewhere
3: for i = 1, ... , n do . Modify working copies of A and B
4: Compute D(x) for all x ∈ V
5: a, b ← argmaxa∈A,b∈B{D(a, b)} . Swap a and b
6: S [i]← (a, b), g [i]← D(a, b) . Record for later
7: end for
8: if argmaxk

∑k
i=1 g [i] > 0 then . Best prefix changes

9: Permanently apply changes S [1], ...,S [k] to originals
10: else
11: return A,B
12: end if
13: end loop

Overview Preliminaries Methods Touch-and-go Going further

Kernighan-Lin (1970) tracing: 1/4

Cut size = 2 + 3 + 5 = 10

a

b

c

d

e

f

1

2

3

4

5

6

A B

D(a) = 4
D(b) = −5
D(c) = 1

D(d) = 2
D(e) = −3
D(f) = −1

D(a, f) = 3 is the largest → Swap a and f

Overview Preliminaries Methods Touch-and-go Going further

Kernighan-Lin (1970) tracing: 2/4

Cut size = 6 + 1 = 7

a

b

c

d

e

f

1

2

34

5
6

A B

D(f) = −2
D(b) = −3
D(c) = −9

D(d) = −2
D(e) = 3
D(a) = −4

D(b, e) = 0 is the largest → Swap b and e

Overview Preliminaries Methods Touch-and-go Going further

Kernighan-Lin (1970) tracing: 3/4

Cut size = 3 + 4 = 7

a

bc

d

e

f

1

2

3

4

5

6

A B

D(f) = −11
D(e) = −3
D(c) = −1

D(d) = −2
D(a) = 0
D(b) = −3

D(b, e) = −1 is the largest → Swap a and c

Overview Preliminaries Methods Touch-and-go Going further

Kernighan-Lin (1970) tracing: 4/4

Since D(a, f) = 3, D(b, e) = 0, and D(b, e) = −1,
the best prefix sum gives us either the 2nd or 3rd graph

Both yield cut size of 7

a

b

c

d

e

f

1

2

34

5

6

A B

a

bc

d

e

f

1

2

3

4

5

6

A B

Overview Preliminaries Methods Touch-and-go Going further

Spectral bisection

(Unnormalized) Laplacian matrix L = D − A
D = diagonal degree matrix
A = adjacency matrix

If G is connected, smallest eigenvector λ1 of L is 0

Fiedler vector (1973):
Eigenvector V2 corresponding to 2nd smallest eigenvalue λ2
Bi-partition using Fielder vector by

Sign of values in V2 (positive vs. negative)
Average of values in V2 (above vs. below average)

Overview Preliminaries Methods Touch-and-go Going further

Demo

See IPython notebook

Overview Preliminaries Methods Touch-and-go Going further

Hierarchical clustering

Goal Given a vertex/cluster similarity metric, iteratively
join or split up vertices

Pros Do not assume k

Cons Hierarchy may not be natural.
Similarity computation may be expensive

Dendrogram is a useful way of visualising outputs of hierarchical
clustering methods.

Overview Preliminaries Methods Touch-and-go Going further

For a suitable metric f

Agglomerative (Bottom-up):

1 Initialise every vertex as own cluster

2 Compute f (i , j) for clusters i and j (may set −∞ if no edge)

3 Combine clusters argmax(i ,j)f (i , j) with highest f score.

4 Repeat previous 2 steps until only 1 cluster remain

Divisive (Top-down):

1 Compute f (·) for all edges

2 Remove argmaxe f (e). Handle ties randomly

3 Repeat previous steps until no more edges

Quality of split depends on f , but f cannot be too expensive!

Overview Preliminaries Methods Touch-and-go Going further

Agglomerative (Bottom-up)

Ways to combine clusters C1 and C2:

Single-linkage (min):

f (C1,C2) = min
i∈C1,j∈C2

f (i , j)

Complete-linkage (max):

f (C1,C2) = max
i∈C1,j∈C2

f (i , j)

Average-linkage (avg):

f (C1,C2) =
1

|C1| · |C2|
∑

i∈C1,j∈C2

f (i , j)

Overview Preliminaries Methods Touch-and-go Going further

Divisive (Top-down)

One popular algorithm: Girvan and Newman (2002)

Lots of modifications and extensions

Their metric f is the concept of betweenness
Roughly: How frequent an edge is involved in “some process”

3 variants of edge betweenness

1 f1(e): Geodesic edge betweenness
shortest paths between all vertex pairs that include edge e

2 f2(e): Random-walk edge betweenness
How likely is e involved in a random walk from s to t?

3 f3(e): Current-flow edge betweenness
Put voltage across 2 vertices → Kirchoff’s equations.
f3(e) = Average current of e across all vertex pairs.

Equations of f2 and f3 shown to be equivalent.

Overview Preliminaries Methods Touch-and-go Going further

Dendrogram example

v1 v2 v3 v4 v5

A
gg

lo
m

er
at

iv
e

D
ivisive

Overview Preliminaries Methods Touch-and-go Going further

Partitional clustering

Goal Given a distance metric, separate vertices into
clusters based on some cost function involving
distances between points in a cluster, or points to a
cluster centroid

Pros Fast convergence

Cons Need to know k . Sensitive to initialisation

Overview Preliminaries Methods Touch-and-go Going further

k-means

Iteratively improve from random initialisation of k centroids

1 Assign vertex to closest centroid

2 Update centroid to average coordinate of all assigned vertices

3 Repeat previous steps until convergence

A special case of Expectation-Maximisation (EM) algorithms

Multiple ways to define convergence (can be a mixture):

Fixed number of iterations
Assignments to clusters did not change
Clusters did not change positions
Decrease in the sum of distances from vertices to assigned
centroids is below a threshold

Overview Preliminaries Methods Touch-and-go Going further

Demo

See IPython notebook

Overview Preliminaries Methods Touch-and-go Going further

Spectral clustering

Goal Using a similarity metric, partition sets into clusters
using eigenvectors of matrices

Pros Induced metric space tends to reveal clustering
properties better

Cons Computation of eigenvalues and eigenvectors may be
expensive for large graphs

Strongly related to perturbation theory, graph cuts, etc.

Can view as a non-linear graph transformation /
dimension-reduction preprocessing step before executing
standard techniques like k-means

Unnormalised Laplacian matrix L = D − A (Fiedler)

Symmetric normalised Laplacian matrices L = I − D−
1
2AD−

1
2

(Andrew Ng, Michael Jordan, Yair Weiss, etc.)

Overview Preliminaries Methods Touch-and-go Going further

Spectral clustering with unnormalised Laplacian

1 Compute eigenvectors and eigenvalues of Laplacian L = D −A

2 Pick k = argmaxi=2,3,...,n|λi − λi−1|
3 Graph transformation:

Form new matrix M = (V1,V2, ...,Vk) ∈ Rnxk

4 Run k-means on M, treating each row as a point

5 Cluster original points according to k-means results on M

Overview Preliminaries Methods Touch-and-go Going further

Demo

See IPython notebook

Overview Preliminaries Methods Touch-and-go Going further

Modularity

Popularised by Newman and Girvan

Recall modularity:Q = 1
2m

∑
vi ,vj∈V (Ai,j −

deg(vi)deg(vj)

2m
)1{vi and vj same cluster}

Assumption: Higher Q ⇒ Better partition

Optimize Q to find best partition via methods like greedy
agglomeration, simulated annealing, etc.

Caveat:

The assumption doesn’t always hold
“Modularity maximum of a graph reveals a significant
community structure only if it is appreciably larger than the
modularity maximum of random graphs of the same size and
expected degree sequence.”
See survey paper, Section IV. C. ‘Limits of modularity’

Overview Preliminaries Methods Touch-and-go Going further

Dynamic methods

Spin models
Popular model in statistical mechanics: Potts model
Each vertex can hold a different state/spin
Goal: Minimise energy H based on neighbour interactions

Random walk
Community structures have high density of internal edges
Random walkers spend long time within the same community

Note: Not dynamic in the sense of a changing graph

Overview Preliminaries Methods Touch-and-go Going further

Statistical inference methods

Find best hypothesis that fits actual graph topology

Bayes theorem: P(Θ|D) = 1
Z P(D|Θ)P(Θ)

Θ: Parameters/hypothesis
D: Data/Actual graph
Z : Normalizing constant (usually hard to compute)

Methods usually find Θ that maximise P(D|Θ).

Example: Planted partition model (Hastings, 2006)

Overview Preliminaries Methods Touch-and-go Going further

Planted partition model (Hastings, 2006)

Input Graph G , number of clusters k , pin and pout

Solve argmaxpartition qiP(G |qi) via belief propagation

Output Most likely partition q∗

pin: Probability that vertices in same group are linked

pout : Probability that vertices in different groups are linked

Notice similarity to spin model approach.

Overview Preliminaries Methods Touch-and-go Going further

What’s next?

Today:

Graph partitioning:
Kernighan-Lin, Spectral bisection via Fiedler vector

Hierarchical clustering
Agglomerative, Divisive (Girvan and Newman)

Partitional clustering: k-means

Spectral clustering with unnormalised Laplacian

Other interesting directions:

Finding covers (e.g. clique percolation)

Multiresolution and cluster hierarchy

Detection of dynamic communities

Overview Preliminaries Methods Touch-and-go Going further

How to develop a clustering algorithm?

No single best algorithm for all problem settings.

Make good observations in your problem domain:
Construct and study a few graphs, extract insights, etc.

Formalise the observation quantitatively

Find ways to optimise

Test and check that your quantitative measure correctly
reflects your qualitative goal

Overview Preliminaries Methods Touch-and-go Going further

Further reading

Community detection in graphs
https://arxiv.org/pdf/0906.0612v2.pdf

A Tutorial on Spectral Clustering
https://arxiv.org/pdf/0711.0189v1.pdf

On Spectral Clustering: Analysis and an Algorithm
http://ai.stanford.edu/~ang/papers/nips01-spectral.pdf

https://arxiv.org/pdf/0906.0612v2.pdf
https://arxiv.org/pdf/0711.0189v1.pdf
http://ai.stanford.edu/~ang/papers/nips01-spectral.pdf

	Overview
	Preliminaries
	Methods
	Graph partitioning
	Hierarchical clustering
	Partitional clustering
	Spectral clustering

	Touch-and-go
	Going further

