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Overview

Coffee talk

Friend What are you doing at work?
Me Improving SAT solvers
Friend Wah, so can get perfect score on the test? X
Friend Wah, so if you find an efficient method to solve all
cases, you can get $1 million and eternal glory?

Friend How are you doing it?
Me By improving heuristics in existing solvers via Al/ML
techniques, and coming up with new solving methods

Friend Why are you looking at SAT solving?
Me If | tell you, | would have to kill you®

"We all secretly like to say that for fun, right? :p



Overview

What is SAT?

@ A boolean SATisfiability problem refers to determining
whether there exists a satisfying assignment to a given
boolean formula F

e Example (Pigeonhole problem): 2 pigeons, 1 hole

x1,x2 € 40,1} = {False, True}
x1 : Pigeon 1 in the hole
xp : Pigeon 2 in the hole
x1 A xa : Cannot have 2 pigeons in same hole
F o (x) A () A (X1 Ax)

Question: What to assign to x; and x» such that F holds?
This problem is UNSATisfiable.
Pigeonhole is SAT <= no. of pigeons < no. of holes



Overview

A million dollar question: P = NP?

Millennium Prize Problems

https://en.wikipedia.org/wiki/Millennium_Prize_Problems

“The Millennium Prize Problems are seven problems in mathematics that were stated by the Clay Mathematics
Institute in 2000. The problems are Birch and Swinnerton-Dyer conjecture, Hodge conjecture, Navier-Stokes
existence and smoothness, P versus NP problem, Peinearé-eonjeettre, Riemann hypothesis, and Yang-Mills
existence and mass gap. A correct solution to any of the problems results in a US $1 million prize being awarded by

the institute to the discoverer(s).”
P=N
U

&%&WMMWW
HOW!

Rally to Restore Sanity and/or Fear (October 30, 2010)
Image source: https://emeryblogger.com/2010/


https://en.wikipedia.org/wiki/Millennium_Prize_Problems
https://emeryblogger.com/2010/

Overview

Why is SAT hard?

Informally,
P Problems that can be solved efficiently
NP Problems whose solutions can be verified efficiently
Examples of interesting P problems:
@ Inverting a matrix
@ Linear Programming (LP) problems

Examples of interesting NP problems:

Integer Linear Programming (ILP) problems
Travelling salesman problem NP-complete
SAT problems

Integer factorization?
Many cryptographic primitives rely on this problem being hard

2As of 2016, not known if it is NP-complete



Overview

Implications of “P = NP?" in research

A "Downfall" Parody: P = NP

Arthur Gordon, Allison Gurlitz, Stephen Lam, Eugene Moy

Source: https://www.youtube.com/watch?v=GSIodz9GWxc



https://www.youtube.com/watch?v=GSIodz9GWxc

Overview

Why is SAT interesting?

@ Theoretical community: “P = NP?"
@ Boolean formulas are very expressive.
e Many interesting problems are NP-hard
e.g. Travelling Salesman Problem, Bin packing
e Any NP-hard problem can be mapped to SAT
@ Beyond Boolean: Satisfiability Modulo Theories (SMT) solvers
@ Industry: Solvers as a practical tool (e.g. Microsoft's Z3)

o Model checking: Encode program semantics
e Theorem provers: Prove theorems with set of encoded axioms
o Efficiently solve game theoretical problems:
Solving stable matching problem with couples (IJCAI 2015)
e Using SAT solvers as black-box to perform efficient
constrained sampling and counting (AAAI 2016)



Overview

Why is SAT interesting

A 1000x Improvement

+ Solver-based programming languages
+ Compiler optimizations using solvers
+ Solver-based debuggers

+ Solver-based type systems

+ Solver-based concurrency bugfinding
+ Solver-based synthesis

1,000,000 Constraints + Bio & Optimization

+ Concolic Testing
 Program Analysis
+ Equivalence Checking

100,000 Constraints Ao Configirasion

+ Bounded MC
+ Program Analysis
- Al

10,000 Constraints

1,000 Constraints €
1998 2001 2004 2007 2010

Source: https://ece.uwaterloo.ca/~vganesh/talks/SATSMT-Dagstuhl-Aug8-12-2011-partl.pdf


https://ece.uwaterloo.ca/~vganesh/talks/SATSMT-Dagstuhl-Aug8-12-2011-part1.pdf

Overview

Personal take

@ Give up on solving all instances efficiently

@ Hope: Solve specific classes of instances efficiently
e.g. Can we build an efficient pigeonhole solver?

@ Even speeding it up in constant time is good practical
progress (10x speed up: 10 years — 1 year)



Definitions
Propositional logic

@ Set of variables: X = {x1,x2, ..., xn}
o Set of literals: L = {x1,X1, X2, X2, ..., Xn, Xn }, i = X;j or X;
@ Common boolean operators o: A, V, =, ® and =
@ Let F be the set of well-formed formulas. F € F if
(i) F=x;, (i) F =X, or (iii)) F = FLo F, (for F1,F € F)
@ Assignment o : X — {0,1}.
a(x;) if i = x;
1-— a(x;) if [ =x;

e Valuation function under assignment «, v, : F — {0,1}

For I; € L, a(/;) =

@ « is a satisfying assignment for F if v,(F) =1



Definitions

Conjunctive Normal Form (CNF)

@ Fisin CNF if:

F=GANGAN..ANCy

C = i1V..V /l',ki

Informally, F is in the form of “ANDs of ORs"

C; is also called a clause

l/a(Ci) =1, if 3/,',;( € C; such that Oz(/,',k) =1

vo(F) =1, if VC; € F such that v,(G) =1

@ Fact: All boolean formulas in prop. logic can be put into CNF
e.g. (x1) A (x2) A (x1 A'x2) becomes (x1) A (x2) A (51 V X2)

o DIMACS: A specification of storing CNF on computers as
inputs to SAT solvers



Definitions

How would you solve this?

X1, X2, X3, X4, X5, X6, X7 € {0,1}
Unknown: xi, X2, X3, Xa, X5
Observed: xg, x7

Model

x1 : Real unknown
x> : Real unknown
x3 1 X1V Xo

X4 @ X1 N\ TXo

X5 : X1 D Xo

X6 : X3 V ixq V T
X7 1 X3 N\ Xz




Definitions

Method 1 : Truth table enumeration

x1 : Real unknown

x> : Real unknown X1 X2 X3 Xa X5 Xg X
X3 X1V X2 0 0 0 0 0 1 0
X1 X1 N\ X2 0o 1 1 0 1 1 1
X5+ X1 D X2 1 0 1 1 1 0 1
X6 - X3V mxg V x5 1 1. 1 0 0 1 0

X7 1 X3 N\ X5

@ Given x and x7, read off solution in O(1)
x6 = 0,x7 =0 — v(F) = 0 for every possible a — (UNSAT)
x6=0,x7=1—=a(x1)=1a(x)=0
x6 = 1,x7 =0 = a(x1) = a(xo) ——— (2 solutions)
x=1x=1—=a(x)=1a(x)=0

@ Problem: Memory requirement scales in O(2"")
n = number of variables
u = number of real unknowns



Definitions

Method 2 : Tree search methods

Breadth first search
o Worst case leads to explosion in memory requirements

Depth first search

e Transfers memory overhead to time overhead
o If we are lucky, we guess it in 1 shot!

Improvement: Use tree pruning methods while searching
Problem: How to pick branching variable?

Problem: How to pick polarity of variable?

Problem: If UNSAT, may have to visit every branch



State of the art

Approaches

Problem definition Given a formula F, find a satisfying assignment
o (SAT) or declare that F is unsatisfiable (UNSAT).

Incomplete solvers

@ Return a correct solution if found

@ Declare no solution with some level of confidence

@ Usually some form of local search

@ Performs well on problems with several solutions
Complete solvers (*)

@ Return a correct solution if found

@ Declare no solution with absolute certainty

@ Exhaustive search techniques that work even when there is
exactly 1 solution out of 2" possibilities



State of the art

Davis-Putnam-Logemann-Loveland (DPLL)

Depth first search with chronological backtrack

Algorithm 1 DPLL(F)

1. if F = & then return @
2: else if @ € F then return UNSAT

3: else

4 Pick an unassigned variable x > e.g. Pick smallest x;
5: if DPLL(F[x/1]) # UNSAT then > Try x = True
6: return DPLL(F[x/1]) U {x/1}

7: else if DPLL(F[x/0]) # UNSAT then > Try x = False
8: return DPLL(F[x/0]) U {x/0}

9: else > Both assignments to x failed. No solution
10: return UNSAT

11: end if

12: end if




State of the art

What goes on in F[x/1]?

Substitution x replaced by True, X by False.
Can ignore all clauses in F[x/1] that had x previously

Unit propagation If a clause becomes unit, that remaining literal is
immediately assigned and F is further simplified

F: Clause GG =Xx1VxVOV..V0
F[x/1] : Clause G; =0V x> V0... V0
Have to assign xo = True to satisfy F[x/1]

Pure literal elimination Assign any pure literals

A variable x; is pure if only x; or X; appears in F.
If F contains both x; and X;, x; is not pure.



State of the art

DPLL Example

X1, X2, X3, X4, X5, Xg, X7 € {07 1}

Unknown: xi, X2, X3, X4, X5 Model
Observed: xg, x7 x1 : Real unknown
x> : Real unknown
Model X3 :x1V X
x1 : Real unknown Xz 1 X1 N\ —xo
x> 1 Real unknown x5 1 (X1 Vx2) A (—x1 V—xp)
X3 :x1V X2 T :-x3V-xgV-xg
X4 @ X1 A\ X2 T :x3A\ x5
X5 1 X1 D X2
Xe : Tx3 V —xg V g x3 =7
X7 1 x3 N\ Xg x4 =7
X5 =7
Suppose: x¢ = True
Xe = True x7 = True

x7 = True



State of the art

DPLL Example

X1, X2, X3, X4, X5, Xg, X7 € {07 1}

Unknown: xi, X2, X3, X4, X5 Model
Observed: xg, x7 x1 : Real unknown
x> : Real unknown
Model T :x1V X
x1 : Real unknown Xz 1 X1 N\ —xo
x2 : Real unknown T:(x1Vx)A(—x1V—x)
X3 :x1V X2 T:FV-x4VF
X4 @ X1 A\ X2 T:-TAT
X5 1 X1 D X2
X : X3V Txg V TXg x3 = True
X7 1 x3 N\ Xg x4 =7
x5 = True
Suppose: X = True
xg = True x7 = True

x7 = True



State of the art

DPLL Example

X1, X2, X3, X4, X5, Xg, X7 € {07 1}

Unknown: xi, X2, X3, X4, X5 Model
Observed: xg, x7 x1 : Real unknown
x> : Real unknown
Model T :x1V X
x1 . Real unknown F:x1NA—x
x2 : Real unknown T:(x1Vx)A(—x1V—x)
X3 :x1V X2 T:-FVTVF
X4 @ X1 A\ X2 T:-TAT
X5 1 X1 D X2
X : X3V Txg V TXg x3 = True
X7 1 x3 N\ Xg x4 = False
x5 = True
Suppose: X = True
xg = True x7 = True

x7 = True



State of the art

DPLL Example

X1, X2, X3, X4, X5, Xg, X7 € {07 1}

Unknown: xi, X2, X3, X4, X5 After repeatedly using unit
Observed: xg, x7 propagation and simplification:
a(x3) =
Model axg) =
x1 : Real unknown alxs) =1
x> : Real unknown alxg) =1
x3 1 x1V X2 a(x7) =1
Xg 1 X1 N\ TXo
X5 @ X1 D Xo CNF reduces to:
X6 : X3 V —ixg V —xs (x1Vx) ATV x)A (X VX2)
X7 1 X3\ Xp
Perform branching to solve:
Suppose: a(x1) =0
xg = True alx) =1

x7 = True



State of the art
But wait, there's more!

Implementations: Pick literals — Pick variable, then polarity

Variable selection Heuristics (e.g. VSIDS, CHB, LRB)

Polarity selection Heuristics (e.g. BOHM, MOM, Jeroslow-Wang),
Polarity preservation

Efficient data structures SATO's Head/Tail, Watched literals
Learning while searching Conflict Driven Clause Learning (CDCL)

Simplifying the problem Clause subsumption, Bounded variable
addition (BVA), Bounded variable elimination (BVE)

Native XOR Simplex, Gaussian elimination
e.g. CryptoMiniSAT, Tero's PhD, NTU's SimpSat
Random restarts To avoid getting stuck locally

Incremental SAT Allows injection of new constraints on the fly



State of the art

Some details on the 4 most important add-ons

@ Conflict Driven Clause Learning (CDCL)
e Perform resolution on conflict clause in implication graph
@ Variable selection heuristics

e Branch on argmaxgee vh(v), h(v) = heuristic of variable v.
o VSIDS3: Increase h(v) when we see variable v

o Conlflict History Based: Skew h(v) to encourage conflicts
o Learning Rate Based: Skew h(v) to encourage learning

© Polarity preservation

e Avoid repeating subtree search when backtracking
e Assign variable with the polarity it was previously, if possible
e Can be implemented using a simple size n boolean array

@ Watched literals data structure

o For every clause, track only 2 of the literals
o Allows fast checking when propagating and O(1) backtracking

3Variable State Independent Decaying Sum



State of the art

Notable implementations and papers

GRASP Conflict Driven Clause Learning
Chaff VSIDS heuristic, Watched literals data structure

Paper on polarity preservation
Knot Pipatsrisawat and Adnan Darwiche.
A Lightweight Component Caching Scheme for
Satisfiability Solvers

MiniSAT Developed by Niklas En, Niklas Srensson.

Relatively small code base.
Used by various people to try ideas and extend upon

CryptoMiniSAT Personal project of Mate Soos.

Incorporates XOR natively via Gaussian elimination.
Actively tries to incorporate new research ideas



State of the art

Stalmarck’s method

e Background
o Invented and patented (expired in 2011) by Gunnar Stalmarck
o Key technology behind Prover Technology
e Few records in literature as no one worked on it

@ Tautology checker

e Given a propositional formula F, able to declare if it is UNSAT
e Can be modified to return a counter-model if F is SAT
e Usage: Given F, check if —=F is UNSAT



State of the art

Triples representation

@ Instead of CNF, represent

Semantic meaning

problem as triples 1D
( parent ID : left o right ) 0
@ The 2(n+i) indexing holds 1
only if every clause has 1
binary operator Not real triples
@ Otherwise, chunk it up 2i+1
(Beware of bracket ordering)

@ For example: .
BV VX =(GVX) VX 2(n+i)
@ |Initially, every triple represents 2(n+i)+1
an eq class of its own :

@ Merge things that must hold The rest

into the True eq class

False
True

X
Xi

Clause i
Clause i

Link up variable definitions



State of the art

Triples representation

ID Semantic meaning
X1, X2, X3, X4, X5, X6, X7 € {0/1} 0 False
Unknown: xi, X2, X3, X4, X5 1. True
2i Xj
Observed: xg, x7 21 .
1
16, 17 X1V x2
Model 18,19 X1 N\ —x2
x1 : Real unknown 20,21 X1 @ x
22,23 X3V Xg
X2 : Real unknown 24 25 23V
X3 X1V X 26, 27 x3 A Xs
X4 X1 A =% 28, 29 7=17
. 30, 31 9=19
X5 1 x1 DX 32, 33 11=21
Xe 1 X3V Xg V X5 34, 35 13=25
X7 1 X3 N\ X5 36, 37 15 =27

Merge {29, 31, 33,35,37} with 1
(Shadow): Merge {28,30,32,34,36} with 0



State of the art
0-Saturation

@ Repeated application of simple deductive rules merge
equivalence classes till we reach a fixed point

@ F is UNSAT if True(T,1) and False(.L,0) are in same eq class

Here are some simple rules:

(P:LAR) (P:LVR) (P:LoR) (P:L=R)
P=T P=1 P=T P=1L

L=T,R=T L=1,R=1 L=R R=T
L=R L=R P=_1 R=1

]
Il
l_
]
M
_|
'\
Il
Py
]
Il
~|



State of the art

Example with 0-Saturation

ID Semantic meaning

0 False

1 True

2i x; Merge {29, 31, 33,35,37} with 1
2i+1 X; Merge {28, 30,32,34,36} with 0 (Shadow)
16, 17 x1 V X2
18, 19 X1 A 7o 0,28, 30, 32, 34, 36]
20, 21 x1 @ x2 [1,29,31,33,35,37]
22,23 %V X [2][3][4][5][6](7]
24, 25 23V [8][9][10][11][12][13]
26, 27 X3 A\ X5 [14][15][16][17][18][19]
28, 29 T=17 [20][21][22][23][24][25]
30, 31 9=19 [26][27]
32, 33 11=21
34, 35 13=25

36, 37 15=27



State of the art

Example with 0-Saturation

Rules fired:

ID Semantic meaning @ 36=015=27

0 False Q@ 4=013=25

1 True B B

2i X Q R2=0F11=21
2i+1 Xi Q@ 30=0F9=19
16,17 VX 28=07=17
18, 19 X1 N\ —x2 e ):
3(2)' §§ ﬁfé [0,28,30,32, 34, 36]
4 25 I (1,29, 31, 33,35, 37]
26, 27 o [6,16][7, 17]
28, 29 =17 [5. 18][9, 19]
30, 31 9=19 [10,20][11,21]
32,33 11=21 [12, 24][13, 25]
34, 35 13=125 [14, 26][15, 27]
36, 37 15 =27 [2][3][4][5][22][23]

Personally, | call this the model prior.



State of the art

Example with 0-Saturation

ID Semantic meaning [0, 28, 30, 32, 34, 36]
0 False [1,29, 31, 33, 35, 37]
1 True [6,16][7, 17]
] rd 8, 18][9, 19]
2i Xi [10, 20][11, 21]
2i+1 X; [12, 24][13, 25]
16, 17 x1 V x2 [14, 26][15, 27]
18, 19 X1 A = [21[3]4][51[22][23]
20, 21 X1 D x2
22 23 5V Suppose we set X6 = 0,x7 =0,
24, 25 23V x5 Merge {12,14} with 1
26, 27 x3 A Xs Merge {13,15} with 0 (Shadow)
28, 29 7=17
30, 31 9=19
32,33 11=21 [0, 13, 15, 25, 27, 28, 30, 32, 34, 36]
—_ 1,12, 14, 24, 26, 29, 31, 33, 35, 37
34, 35 13=25 [ R I
36, 37 15 =27 [8, 18][9, 19]

[10, 20][11, 21]
[213][4](5]22][23]



State of the art

Example with 0-Saturation

[0, 13, 15, 25, 27, 28, 30, 32, 34, 36]
[1,12, 14,24, 26, 29, 31, 33, 35, 37|

ID Semantic meaning [6, 16][7, 17]
8, 18][9, 19
0 False [1[0, 20”11, 2]1]
1 True [21[3][41(5](22][23]
2i Xi
2i+1 Xi Rule fired:
16, 17 x1V xo
18, 19 X1 N\ X2 Y (23 \Vi 75) = Fv
20, 21 X1 @ x2
22,23 X3V Xz so 23 = False and x5 = False
24, 25 23V x5
26, 27 x3 A Xs ©25=023=0,10=0
28, 29 7T=17
30, 31 9=19 @ Merge 22 =1,11 =1 (Shadow)
32, 33 11=21
34, 35 13=25 : ]
_ 0, 10, 13, 15, 20, 23, 25, 27, 28, 30, 32, 34, 36
36, 37 15=27 [1,11,12,14, 21, 22, 24, 26, 29, 31, 33, 35, 37]
6, 16][7, 17]
8, 18][9, 19]
[10, 20][11, 21]

[21[3][4][5][22][23]



State of the art

Example with 0-Saturation

[0, 10, 13, 15, 20, 23, 25, 27, 28, 30, 32, 34, 36]

ID Semantic meaning [1,11,12, 14»21’[(232&5{4[%2?%]29’31733735, 37]
0 False [8: 18] [9: 19]
1 True [10, 20][11, 21]
2i X [21[3]4][5][22][23]
2i+1 X; .
16, 17 1V X Rule fired:
18, 19 x1 A\ —xo o -
20, 21 x1 D x2 ® (x3Axs5) = F but xs = True,
22,23 X3V Xg _
24, 25 23V so x3 = False
26, 27 x3 A\ X5 027=011=1 _
28, 29 7=17 7=011=1F7=0
30,31 9=19 @ Merge 6 =1 (Shadow)
32,33 11=21
34, 35 13=25
36, 37 15 =27 [0, 7, 10, 13, 15, 17, 20, 23, 25, 27, 28, 30, 32, 34, 36]
[1,6,11,12, 14, 16, 21, 22, 24, 26, 29, 31, 33, 35, 37
8, 18][9, 19]

[10, 20][11, 21]
(2]3][4](5](22]23]



Example with 0-Saturation

State of the art

ID Semantic meaning
0 False
1 True
2i x;
2i+1 Xj
16, 17 X1V X2
18, 19 X1 N\ —X2
20, 21 X1 D x2
22,23 X3V Xz
24, 25 23V Xs
26, 27 X3 N\ X5
28, 29 7=17
30, 31 9=19
32,33 11=21
34, 35 13=25
36, 37 15 =27

[0,7, 10,13, 15,17, 20, 23, 25, 27, 28, 30, 32, 34, 36]
[1,6,11,12, 14, 16, 21, 22, 24, 26, 29, 31, 33, 35, 37]
8, 18][9, 19]

[10, 20][11, 21]

[21[3]141(5][22][23]

Rule fired:
° (3Vx)=F,
so X3 = False and Xs = False
©23=0F6=0,8=0
© Merge 7=1,9 =1 (Shadow)

[0,1,6,7,8,9,10, 11,12, 13, 14, 15, 16, 17, 20, 21, 22, 23,
24,25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37]
[10, 20][11, 21]

[2][3]141(5][22][23]

Contradiction since True(1) = False(0)



State of the art

k-Saturation

@ For interesting problems, 0-Saturation is insufficient
@ Make assumptions and branch in a Breadth First manner

@ k-Saturation
o Defined recursively in terms of (k — 1)-Saturation
o Base case: 0-Saturation = Apply simple rules till fixed point

@ Dilemma rule
o Intersect results from opposing branches in k-Saturation
e Example:
Suppose branching x; = True yields x; = True.
Suppose branching x; = False also yields x, = True.
Taking the intersection, we yield x, = True from here on.



State of the art

k-Saturation

Note: SATURATE(O, E) = 0-Saturate(E)

Algorithm 2 SATURATE(k, E)

1: C <« equivalence classes of E > 1 representative per class
2: for x,y € C,x # y do

3: E =, < SATURATE(k — 1, E with x = y)

4: Ei=y < SATURATE(k — 1, E with x =y

5: if Ex=, has Contradiction then E < E,—y

6 else if £,y has Contradiction then E < E,—,

7 else £ < E.=, N Ex=y > Dilemma rule
8: end if

9: end for

10: return E




State of the art

Stalmarck’s method

Breadth first search using k-Saturation and dilemma rule
E is a set of equivalent classes of triples converted from —F

Algorithm 3 STALMARCK(F)

1: k<0

2: loop

3: E' < SATURATE(k, E)

4 if E' is contradictory then

5 return F is a tautology

6: else if E' has only 2 eq classes ( True and False) then

7 return Assignment based on E’

8 end if

o: k+—k+1 > Increment k

10: end loop




State of the art

Example with 0-Saturation

[0, 28, 30, 32, 34, 36]

ID Semantic meaning [ 2[965 3116’][37371375]7 37]
0 False i8, 18][9, 19]
) True o 2allis. o9
2 Xi (14, 26][15, 27]
2i+1 Xi RIIEI122][23]
16, 17 x1 V X2
;g' ;? X1 /g;’q Suppose we set xg = 1,x7 =0,
, X1 @ X2 '
22 23 N Merge {13,14} w!th 1
24, 25 23V x5 Merge {12,15} with O (Shadow)
26, 27 x3 A\ Xs
28,29 r= [0, 12,15, 24, 27, 28, 30, 32, 34, 36]
30,31 9=19 [1,13, 14, 25, 26, 29, 31, 33, 35, 37]
32,33 11=21 [6, 16][7, 17]
34, 35 13=25 8, 18][9, 13]
36, 37 15 = 27 [10, 20][11, 21]

[21[3]4][5][22] 23]

No applicable simple rule!



Example with 0-Saturation

State of the art

ID Semantic meaning
0 False
1 True
2i x;
2i+1 Xj
16, 17 x1 V xo
18, 19 X1 N\ = X2
20, 21 X1 P x2
22, 23 X3V Xa
24, 25 23V X5
26, 27 X3 N\ X5
28, 29 7=17
30, 31 9=19
32,33 11=21
34, 35 13=25
36, 37 15 =27

Guess x3 = True,
Merge 7 with 1
Merge 6 with 0 (Shadow)

[0, 6, 28, 30, 32, 34, 36]
[1,7,29,31, 33, 35, 37]
8, 18][9, 19]

[10, 20][11, 21]

[12, 24][13, 25]

[14, 26][15, 27]
[2131[4](5](22][23]

After 0-saturation:

[0,2,4,6,9,11,12, 15, 16, 19, 21, 22, 24, 27, 28, 30, 32, 34, 36]
[1,3,5,7,8,10,13, 14,17, 18, 20, 23, 25, 26, 29, 31, 33, 35, 37]

Satisfying assignment:
x1 = True,xo = True



State of the art

Notable implementations and papers

Stalmarck implementation 404 Not Found

Tutorial Mary Sheeran, Gunnar Stalmarck. A Tutorial on
Stalmarck’s Proof Procedure for Propositional Logic

Thesis Jakob Nordstrom. Stalmarcks Method versus
Resolution: A Comparative Theoretical Study

Generalization Aditya Thakur, Thomas Reps. A Generalization of
Staalmarcks Method



Going forward

Summary

Today:
@ Introduction to SAT

o What is SAT?
o Why is SAT hard?
e Why is SAT interesting?

@ State-of-the-art SAT solvers

e DPLL + CDCL (Depth first)
o Stalmarck (Breadth first)

@ Sneak peek at our work in this area
What's next?
@ Specialised solvers for each problem class
@ Combination of depth-first and breadth-first

o Parallelism

Let me know if you have any ideas/questions! ©®



Going forward

For fun

NEAT APPLICATIONS OF...
THE PIGEONHOLE PRINCIPLE

IF N+1 PIGEONS ARE PLACED INTO N PIGEONHOLES,
THEN THERE IS A HOLE WITH MORE THAN ONE PIGEON.
AMONS THOSE WHO ATTENDED SUPER BOWL XLIV, AT LEAST TWO
PEOPLE SHARE THE SAME BIRTHDAY (INCLLDING YEAR OF BIRTH).

FURTHERMORE, THERE IS A GROLIP OF AT LEAST 200 ATTENDEES
WHO SHARE THE SAME BIRTH MONTH AND DAY.

ASSUMING FRIENDSHIP IS SYMMETRIC, AT A PARTY WITH TWO
OR MORE PECPLE, THERE MUST BE AT LEAST TWO PEOPLE WHO
HAVE THE SAME NUMBER OF FRIENDS AT THE PARTY.

CHOOSE FIVE DISTINCT NUMBERS FROM THE SET:

{1.2,3,4,5,8,7,8].
TWO OF THEM ADD UP TO NINE.

WE HAD SEX FIVE TIMES THIS PAST
MONTH, YET SIx CONDOMS ARE
MISSING FROM THE BOX. HENCE, =
BY THE PIGEONHOLE PRINCIPLE, =
YOU MUST BE CHEATING ON ME!! — o

spikedmath com
® 2011

Moral of the story: Don't cheat on someone who knows counting!
Source: http://spikedmath.com/390.html
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DPLL on DIMACS
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DPLL on DIMACS

c DIMACS ) ]
penf719 After repeatedly using unit
c x3 :=x1 or x2 . . L .
3120 propagation and simplification:
3-10
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ST T3 Perform branching to solve:
730 _
750 O‘(Xl) =0
Ob: ti _
;0 servations CM(XQ) — 1

70



	Overview
	Definitions
	State of the art
	Going forward
	Appendix

