
Overview Definitions State of the art Going forward

2To be, or not to be?

A look at boolean satisfiability

Davin Choo

DSO National Laboratories
CFL1

2nd February 2017

Overview Definitions State of the art Going forward

Outline

1 Overview

2 Definitions

3 State of the art

4 Going forward

Overview Definitions State of the art Going forward

Coffee talk

Friend What are you doing at work?
Me Improving SAT solvers

Friend Wah, so can get perfect score on the test? 7

Friend Wah, so if you find an efficient method to solve all
cases, you can get $1 million and eternal glory?

3

Friend How are you doing it?
Me By improving heuristics in existing solvers via AI/ML

techniques, and coming up with new solving methods

Friend Why are you looking at SAT solving?
Me If I tell you, I would have to kill you1

1We all secretly like to say that for fun, right? :p

Overview Definitions State of the art Going forward

What is SAT?

A boolean SATisfiability problem refers to determining
whether there exists a satisfying assignment to a given
boolean formula F

Example (Pigeonhole problem): 2 pigeons, 1 hole

x1, x2 ∈ {0, 1} = {False,True}
x1 : Pigeon 1 in the hole
x2 : Pigeon 2 in the hole

x1 ∧ x2 : Cannot have 2 pigeons in same hole
F : (x1) ∧ (x2) ∧ (x1 ∧ x2)

Question: What to assign to x1 and x2 such that F holds?
This problem is UNSATisfiable.

Pigeonhole is SAT ⇐⇒ no. of pigeons ≤ no. of holes

Overview Definitions State of the art Going forward

A million dollar question: P = NP?

Millennium Prize Problems
https://en.wikipedia.org/wiki/Millennium_Prize_Problems

“The Millennium Prize Problems are seven problems in mathematics that were stated by the Clay Mathematics
Institute in 2000. The problems are Birch and Swinnerton-Dyer conjecture, Hodge conjecture, Navier-Stokes
existence and smoothness, P versus NP problem, Poincaré conjecture, Riemann hypothesis, and Yang-Mills
existence and mass gap. A correct solution to any of the problems results in a US $1 million prize being awarded by
the institute to the discoverer(s).”

Rally to Restore Sanity and/or Fear (October 30, 2010)
Image source: https://emeryblogger.com/2010/

https://en.wikipedia.org/wiki/Millennium_Prize_Problems
https://emeryblogger.com/2010/

Overview Definitions State of the art Going forward

Why is SAT hard?

Informally,

P Problems that can be solved efficiently

NP Problems whose solutions can be verified efficiently

Examples of interesting P problems:

Inverting a matrix

Linear Programming (LP) problems

Examples of interesting NP problems:

Integer Linear Programming (ILP) problems

Travelling salesman problem

SAT problems

Integer factorization2

Many cryptographic primitives rely on this problem being hard

NP-complete

2As of 2016, not known if it is NP-complete

Overview Definitions State of the art Going forward

Implications of “P = NP?” in research

Source: https://www.youtube.com/watch?v=GSIodz9GWxc

https://www.youtube.com/watch?v=GSIodz9GWxc

Overview Definitions State of the art Going forward

Why is SAT interesting?

Theoretical community: “P = NP?”

Boolean formulas are very expressive.

Many interesting problems are NP-hard
e.g. Travelling Salesman Problem, Bin packing
Any NP-hard problem can be mapped to SAT

Beyond Boolean: Satisfiability Modulo Theories (SMT) solvers

Industry: Solvers as a practical tool (e.g. Microsoft’s Z3)

Model checking: Encode program semantics
Theorem provers: Prove theorems with set of encoded axioms
Efficiently solve game theoretical problems:
Solving stable matching problem with couples (IJCAI 2015)
Using SAT solvers as black-box to perform efficient
constrained sampling and counting (AAAI 2016)

Overview Definitions State of the art Going forward

Why is SAT interesting?

Source: https://ece.uwaterloo.ca/~vganesh/talks/SATSMT-Dagstuhl-Aug8-12-2011-part1.pdf

https://ece.uwaterloo.ca/~vganesh/talks/SATSMT-Dagstuhl-Aug8-12-2011-part1.pdf

Overview Definitions State of the art Going forward

Personal take

Give up on solving all instances efficiently

Hope: Solve specific classes of instances efficiently
e.g. Can we build an efficient pigeonhole solver?

Even speeding it up in constant time is good practical
progress (10x speed up: 10 years → 1 year)

Overview Definitions State of the art Going forward

Propositional logic

Set of variables: X = {x1, x2, ..., xn}
Set of literals: L = {x1, x1, x2, x2, ..., xn, xn}, li = xi or xi

Common boolean operators ◦: ∧, ∨, ⇒, ⊕ and ≡
Let F be the set of well-formed formulas. F ∈ F if
(i) F = xi , (ii) F = xi , or (iii) F = F1 ◦ F2 (for F1,F2 ∈ F)

Assignment α : X → {0, 1}.

For li ∈ L, α(li) =

{
α(xi) if li = xi

1− α(xi) if li = xi

Valuation function under assignment α, να : F → {0, 1}
α is a satisfying assignment for F if να(F) = 1

Overview Definitions State of the art Going forward

Conjunctive Normal Form (CNF)

F is in CNF if:

F = C1 ∧ C2 ∧ ... ∧ Cm

Ci = li,1 ∨ ... ∨ li,ki
Informally, F is in the form of “ANDs of ORs”
Ci is also called a clause
να(Ci) = 1, if ∃li,k ∈ Ci such that α(li,k) = 1
να(F) = 1, if ∀Ci ∈ F such that να(Ci) = 1

Fact: All boolean formulas in prop. logic can be put into CNF
e.g. (x1) ∧ (x2) ∧ (x1 ∧ x2) becomes (x1) ∧ (x2) ∧ (x1 ∨ x2)

DIMACS: A specification of storing CNF on computers as
inputs to SAT solvers

Overview Definitions State of the art Going forward

How would you solve this?

x1, x2, x3, x4, x5, x6, x7 ∈ {0, 1}
Unknown: x1, x2, x3, x4, x5

Observed: x6, x7

Model
x1 : Real unknown
x2 : Real unknown
x3 : x1 ∨ x2

x4 : x1 ∧ ¬x2

x5 : x1 ⊕ x2

x6 : ¬x3 ∨ ¬x4 ∨ ¬x5

x7 : x3 ∧ x5

x4x3 x5

x1 x2

x6 x7

Overview Definitions State of the art Going forward

Method 1 : Truth table enumeration

x1 : Real unknown
x2 : Real unknown
x3 : x1 ∨ x2

x4 : x1 ∧ ¬x2

x5 : x1 ⊕ x2

x6 : ¬x3 ∨ ¬x4 ∨ ¬x5

x7 : x3 ∧ x5

x1 x2 x3 x4 x5 x6 x7

0 0 0 0 0 1 0
0 1 1 0 1 1 1
1 0 1 1 1 0 1
1 1 1 0 0 1 0

Given x6 and x7, read off solution in O(1)
x6 = 0, x7 = 0→ ν(F) = 0 for every possible α — (UNSAT)
x6 = 0, x7 = 1→ α(x1) = 1, α(x2) = 0
x6 = 1, x7 = 0→ α(x1) = α(x2) —————— (2 solutions)
x6 = 1, x7 = 1→ α(x1) = 1, α(x2) = 0

Problem: Memory requirement scales in O(2nu)
n = number of variables
u = number of real unknowns

Overview Definitions State of the art Going forward

Method 2 : Tree search methods

Breadth first search

Worst case leads to explosion in memory requirements

Depth first search

Transfers memory overhead to time overhead
If we are lucky, we guess it in 1 shot!

Improvement: Use tree pruning methods while searching

Problem: How to pick branching variable?

Problem: How to pick polarity of variable?

Problem: If UNSAT, may have to visit every branch

Overview Definitions State of the art Going forward

Approaches

Problem definition Given a formula F , find a satisfying assignment
α∗ (SAT) or declare that F is unsatisfiable (UNSAT).

Incomplete solvers

Return a correct solution if found

Declare no solution with some level of confidence

Usually some form of local search

Performs well on problems with several solutions

Complete solvers (*)

Return a correct solution if found

Declare no solution with absolute certainty

Exhaustive search techniques that work even when there is
exactly 1 solution out of 2n possibilities

Overview Definitions State of the art Going forward

Davis-Putnam-Logemann-Loveland (DPLL)

Depth first search with chronological backtrack

Algorithm 1 DPLL(F)

1: if F = ∅ then return ∅
2: else if ∅ ∈ F then return UNSAT
3: else
4: Pick an unassigned variable x . e.g. Pick smallest xi
5: if DPLL(F [x/1]) 6= UNSAT then . Try x = True
6: return DPLL(F [x/1]) ∪ {x/1}
7: else if DPLL(F [x/0]) 6= UNSAT then . Try x = False
8: return DPLL(F [x/0]) ∪ {x/0}
9: else . Both assignments to x failed. No solution

10: return UNSAT
11: end if
12: end if

Overview Definitions State of the art Going forward

What goes on in F [x/1]?

Substitution x replaced by True, x by False.

Can ignore all clauses in F [x/1] that had x previously

Unit propagation If a clause becomes unit, that remaining literal is
immediately assigned and F is further simplified

F : Clause Cj = x1 ∨ x2 ∨ 0 ∨ ... ∨ 0
F [x/1] : Clause Cj = 0 ∨ x2 ∨ 0... ∨ 0

Have to assign x2 = True to satisfy F [x/1]

Pure literal elimination Assign any pure literals

A variable xi is pure if only xi or xi appears in F .
If F contains both xi and xi , xi is not pure.

Overview Definitions State of the art Going forward

DPLL Example

x1, x2, x3, x4, x5, x6, x7 ∈ {0, 1}
Unknown: x1, x2, x3, x4, x5

Observed: x6, x7

Model
x1 : Real unknown
x2 : Real unknown
x3 : x1 ∨ x2

x4 : x1 ∧ ¬x2

x5 : x1 ⊕ x2

x6 : ¬x3 ∨ ¬x4 ∨ ¬x5

x7 : x3 ∧ x5

Suppose:
x6 = True
x7 = True

Model
x1 : Real unknown
x2 : Real unknown
x3 : x1 ∨ x2

x4 : x1 ∧ ¬x2

x5 : (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2)
T : ¬x3 ∨ ¬x4 ∨ ¬x5

T : x3 ∧ x5

x3 =?
x4 =?
x5 =?
x6 = True
x7 = True

Overview Definitions State of the art Going forward

DPLL Example

x1, x2, x3, x4, x5, x6, x7 ∈ {0, 1}
Unknown: x1, x2, x3, x4, x5

Observed: x6, x7

Model
x1 : Real unknown
x2 : Real unknown
x3 : x1 ∨ x2

x4 : x1 ∧ ¬x2

x5 : x1 ⊕ x2

x6 : ¬x3 ∨ ¬x4 ∨ ¬x5

x7 : x3 ∧ x5

Suppose:
x6 = True
x7 = True

Model
x1 : Real unknown
x2 : Real unknown
T : x1 ∨ x2

x4 : x1 ∧ ¬x2

T : (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2)
T : F ∨ ¬x4 ∨ F
T : T ∧ T

x3 = True
x4 =?
x5 = True
x6 = True
x7 = True

Overview Definitions State of the art Going forward

DPLL Example

x1, x2, x3, x4, x5, x6, x7 ∈ {0, 1}
Unknown: x1, x2, x3, x4, x5

Observed: x6, x7

Model
x1 : Real unknown
x2 : Real unknown
x3 : x1 ∨ x2

x4 : x1 ∧ ¬x2

x5 : x1 ⊕ x2

x6 : ¬x3 ∨ ¬x4 ∨ ¬x5

x7 : x3 ∧ x5

Suppose:
x6 = True
x7 = True

Model
x1 : Real unknown
x2 : Real unknown
T : x1 ∨ x2

F : x1 ∧ ¬x2

T : (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2)
T : F ∨ T ∨ F
T : T ∧ T

x3 = True
x4 = False
x5 = True
x6 = True
x7 = True

Overview Definitions State of the art Going forward

DPLL Example

x1, x2, x3, x4, x5, x6, x7 ∈ {0, 1}
Unknown: x1, x2, x3, x4, x5

Observed: x6, x7

Model
x1 : Real unknown
x2 : Real unknown
x3 : x1 ∨ x2

x4 : x1 ∧ ¬x2

x5 : x1 ⊕ x2

x6 : ¬x3 ∨ ¬x4 ∨ ¬x5

x7 : x3 ∧ x5

Suppose:
x6 = True
x7 = True

After repeatedly using unit
propagation and simplification:
α(x3) = 1
α(x4) = 0
α(x5) = 1
α(x6) = 1
α(x7) = 1

CNF reduces to:
(x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x1 ∨ x2)

Perform branching to solve:
α(x1) = 0
α(x2) = 1

Overview Definitions State of the art Going forward

But wait, there’s more!

Implementations: Pick literals → Pick variable, then polarity

Variable selection Heuristics (e.g. VSIDS, CHB, LRB)

Polarity selection Heuristics (e.g. BOHM, MOM, Jeroslow-Wang),
Polarity preservation

Efficient data structures SATO’s Head/Tail, Watched literals

Learning while searching Conflict Driven Clause Learning (CDCL)

Simplifying the problem Clause subsumption, Bounded variable
addition (BVA), Bounded variable elimination (BVE)

Native XOR Simplex, Gaussian elimination
e.g. CryptoMiniSAT, Tero’s PhD, NTU’s SimpSat

Random restarts To avoid getting stuck locally

Incremental SAT Allows injection of new constraints on the fly

Overview Definitions State of the art Going forward

Some details on the 4 most important add-ons

1 Conflict Driven Clause Learning (CDCL)

Perform resolution on conflict clause in implication graph

2 Variable selection heuristics

Branch on argmaxfree vh(v), h(v) = heuristic of variable v .
VSIDS3: Increase h(v) when we see variable v
Conflict History Based: Skew h(v) to encourage conflicts
Learning Rate Based: Skew h(v) to encourage learning

3 Polarity preservation

Avoid repeating subtree search when backtracking
Assign variable with the polarity it was previously, if possible
Can be implemented using a simple size n boolean array

4 Watched literals data structure

For every clause, track only 2 of the literals
Allows fast checking when propagating and O(1) backtracking

3Variable State Independent Decaying Sum

Overview Definitions State of the art Going forward

Notable implementations and papers

GRASP Conflict Driven Clause Learning

Chaff VSIDS heuristic, Watched literals data structure

Paper on polarity preservation
Knot Pipatsrisawat and Adnan Darwiche.
A Lightweight Component Caching Scheme for
Satisfiability Solvers

MiniSAT Developed by Niklas En, Niklas Srensson.
Relatively small code base.
Used by various people to try ideas and extend upon

CryptoMiniSAT Personal project of Mate Soos.
Incorporates XOR natively via Gaussian elimination.
Actively tries to incorporate new research ideas

Overview Definitions State of the art Going forward

Stalmarck’s method

Background

Invented and patented (expired in 2011) by Gunnar Stalmarck
Key technology behind Prover Technology
Few records in literature as no one worked on it

Tautology checker

Given a propositional formula F , able to declare if it is UNSAT
Can be modified to return a counter-model if F is SAT
Usage: Given F , check if ¬F is UNSAT

Overview Definitions State of the art Going forward

Triples representation

Instead of CNF, represent
problem as triples
〈 parent ID : left ◦ right 〉
The 2(n+i) indexing holds
only if every clause has 1
binary operator

Otherwise, chunk it up
(Beware of bracket ordering)

For example:
x3 ∨ x4 ∨ x5 = (x3 ∨ x4) ∨ x5

Initially, every triple represents
an eq class of its own

Merge things that must hold
into the True eq class

ID Semantic meaning
0 False
1 True
...

...
2i xi

2i+1 xi
...

...

2(n+i) Clause i
2(n+i)+1 Clause i

...
...

The rest Link up variable definitions

Not real triples

Overview Definitions State of the art Going forward

Triples representation

x1, x2, x3, x4, x5, x6, x7 ∈ {0, 1}
Unknown: x1, x2, x3, x4, x5

Observed: x6, x7

Model
x1 : Real unknown
x2 : Real unknown
x3 : x1 ∨ x2

x4 : x1 ∧ ¬x2

x5 : x1 ⊕ x2

x6 : ¬x3 ∨ ¬x4 ∨ ¬x5

x7 : x3 ∧ x5

ID Semantic meaning
0 False
1 True
2i xi

2i+1 xi
16, 17 x1 ∨ x2

18, 19 x1 ∧ ¬x2

20, 21 x1 ⊕ x2

22, 23 x3 ∨ x4

24, 25 23 ∨ x5

26, 27 x3 ∧ x5

28, 29 7 ≡ 17
30, 31 9 ≡ 19
32, 33 11 ≡ 21
34, 35 13 ≡ 25
36, 37 15 ≡ 27

Merge {29, 31, 33, 35, 37} with 1
(Shadow): Merge {28, 30, 32, 34, 36} with 0

Overview Definitions State of the art Going forward

0-Saturation

Repeated application of simple deductive rules merge
equivalence classes till we reach a fixed point

F is UNSAT if True(>, 1) and False(⊥, 0) are in same eq class

Here are some simple rules:

〈P : L ∧ R〉 〈P : L ∨ R〉 〈P : L⊕ R〉 〈P : L ≡ R〉
P ≡ >

L ≡ >,R ≡ >
P ≡ ⊥

L ≡ ⊥,R ≡ ⊥
P ≡ >
L ≡ R

P ≡ L
R ≡ >

...
...

...
...

L ≡ R
P ≡ ⊥

L ≡ R
P ≡ >

P ≡ ⊥
L ≡ R

R ≡ ⊥
P ≡ L

Overview Definitions State of the art Going forward

Example with 0-Saturation

ID Semantic meaning
0 False
1 True
2i xi

2i+1 xi
16, 17 x1 ∨ x2

18, 19 x1 ∧ ¬x2

20, 21 x1 ⊕ x2

22, 23 x3 ∨ x4

24, 25 23 ∨ x5

26, 27 x3 ∧ x5

28, 29 7 ≡ 17
30, 31 9 ≡ 19
32, 33 11 ≡ 21
34, 35 13 ≡ 25
36, 37 15 ≡ 27

Merge {29, 31, 33, 35, 37} with 1
Merge {28, 30, 32, 34, 36} with 0 (Shadow)

[0, 28, 30, 32, 34, 36]
[1, 29, 31, 33, 35, 37]

[2][3][4][5][6][7]
[8][9][10][11][12][13]

[14][15][16][17][18][19]
[20][21][22][23][24][25]

[26][27]

Overview Definitions State of the art Going forward

Example with 0-Saturation

ID Semantic meaning
0 False
1 True
2i xi

2i+1 xi
16, 17 x1 ∨ x2

18, 19 x1 ∧ ¬x2

20, 21 x1 ⊕ x2

22, 23 x3 ∨ x4

24, 25 23 ∨ x5

26, 27 x3 ∧ x5

28, 29 7 ≡ 17
30, 31 9 ≡ 19
32, 33 11 ≡ 21
34, 35 13 ≡ 25
36, 37 15 ≡ 27

Rules fired:

1 36 ≡ 0 |= 15 ≡ 27

2 4 ≡ 0 |= 13 ≡ 25

3 32 ≡ 0 |= 11 ≡ 21

4 30 ≡ 0 |= 9 ≡ 19

5 28 ≡ 0 |= 7 ≡ 17

[0, 28, 30, 32, 34, 36]
[1, 29, 31, 33, 35, 37]

[6, 16][7, 17]
[8, 18][9, 19]

[10, 20][11, 21]
[12, 24][13, 25]
[14, 26][15, 27]

[2][3][4][5][22][23]

Personally, I call this the model prior.

Overview Definitions State of the art Going forward

Example with 0-Saturation

ID Semantic meaning
0 False
1 True
2i xi

2i+1 xi
16, 17 x1 ∨ x2

18, 19 x1 ∧ ¬x2

20, 21 x1 ⊕ x2

22, 23 x3 ∨ x4

24, 25 23 ∨ x5

26, 27 x3 ∧ x5

28, 29 7 ≡ 17
30, 31 9 ≡ 19
32, 33 11 ≡ 21
34, 35 13 ≡ 25
36, 37 15 ≡ 27

[0, 28, 30, 32, 34, 36]
[1, 29, 31, 33, 35, 37]

[6, 16][7, 17]
[8, 18][9, 19]

[10, 20][11, 21]
[12, 24][13, 25]
[14, 26][15, 27]

[2][3][4][5][22][23]

Suppose we set x6 = 0, x7 = 0,
Merge {12, 14} with 1
Merge {13, 15} with 0 (Shadow)

[0, 13, 15, 25, 27, 28, 30, 32, 34, 36]
[1, 12, 14, 24, 26, 29, 31, 33, 35, 37]

[6, 16][7, 17]
[8, 18][9, 19]

[10, 20][11, 21]
[2][3][4][5][22][23]

Overview Definitions State of the art Going forward

Example with 0-Saturation

ID Semantic meaning
0 False
1 True
2i xi

2i+1 xi
16, 17 x1 ∨ x2

18, 19 x1 ∧ ¬x2

20, 21 x1 ⊕ x2

22, 23 x3 ∨ x4

24, 25 23 ∨ x5

26, 27 x3 ∧ x5

28, 29 7 ≡ 17
30, 31 9 ≡ 19
32, 33 11 ≡ 21
34, 35 13 ≡ 25
36, 37 15 ≡ 27

[0, 13, 15, 25, 27, 28, 30, 32, 34, 36]
[1, 12, 14, 24, 26, 29, 31, 33, 35, 37]

[6, 16][7, 17]
[8, 18][9, 19]

[10, 20][11, 21]
[2][3][4][5][22][23]

Rule fired:

(23 ∨ x5) ≡ F ,

so 23 ≡ False and x5 ≡ False

25 ≡ 0 |= 23 ≡ 0, 10 ≡ 0

Merge 22 ≡ 1, 11 ≡ 1 (Shadow)

[0, 10, 13, 15, 20, 23, 25, 27, 28, 30, 32, 34, 36]
[1, 11, 12, 14, 21, 22, 24, 26, 29, 31, 33, 35, 37]

[6, 16][7, 17]
[8, 18][9, 19]

[10, 20][11, 21]
[2][3][4][5][22][23]

Overview Definitions State of the art Going forward

Example with 0-Saturation

ID Semantic meaning
0 False
1 True
2i xi

2i+1 xi
16, 17 x1 ∨ x2

18, 19 x1 ∧ ¬x2

20, 21 x1 ⊕ x2

22, 23 x3 ∨ x4

24, 25 23 ∨ x5

26, 27 x3 ∧ x5

28, 29 7 ≡ 17
30, 31 9 ≡ 19
32, 33 11 ≡ 21
34, 35 13 ≡ 25
36, 37 15 ≡ 27

[0, 10, 13, 15, 20, 23, 25, 27, 28, 30, 32, 34, 36]
[1, 11, 12, 14, 21, 22, 24, 26, 29, 31, 33, 35, 37]

[6, 16][7, 17]
[8, 18][9, 19]

[10, 20][11, 21]
[2][3][4][5][22][23]

Rule fired:

(x3 ∧ x5) ≡ F but x5 ≡ True,

so x3 ≡ False

27 ≡ 0, 11 ≡ 1 |= 7 ≡ 0

Merge 6 ≡ 1 (Shadow)

[0, 7, 10, 13, 15, 17, 20, 23, 25, 27, 28, 30, 32, 34, 36]
[1, 6, 11, 12, 14, 16, 21, 22, 24, 26, 29, 31, 33, 35, 37]

[8, 18][9, 19]
[10, 20][11, 21]

[2][3][4][5][22][23]

Overview Definitions State of the art Going forward

Example with 0-Saturation

ID Semantic meaning
0 False
1 True
2i xi

2i+1 xi
16, 17 x1 ∨ x2

18, 19 x1 ∧ ¬x2

20, 21 x1 ⊕ x2

22, 23 x3 ∨ x4

24, 25 23 ∨ x5

26, 27 x3 ∧ x5

28, 29 7 ≡ 17
30, 31 9 ≡ 19
32, 33 11 ≡ 21
34, 35 13 ≡ 25
36, 37 15 ≡ 27

[0, 7, 10, 13, 15, 17, 20, 23, 25, 27, 28, 30, 32, 34, 36]
[1, 6, 11, 12, 14, 16, 21, 22, 24, 26, 29, 31, 33, 35, 37]

[8, 18][9, 19]
[10, 20][11, 21]

[2][3][4][5][22][23]

Rule fired:

(x3 ∨ x5) ≡ F ,

so x3 ≡ False and x5 ≡ False

23 ≡ 0 |= 6 ≡ 0, 8 ≡ 0

Merge 7 ≡ 1, 9 ≡ 1 (Shadow)

[0, 1, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37]

[10, 20][11, 21]
[2][3][4][5][22][23]

Contradiction since True(1) ≡ False(0)

Overview Definitions State of the art Going forward

k-Saturation

For interesting problems, 0-Saturation is insufficient

Make assumptions and branch in a Breadth First manner

k-Saturation

Defined recursively in terms of (k − 1)-Saturation
Base case: 0-Saturation = Apply simple rules till fixed point

Dilemma rule

Intersect results from opposing branches in k-Saturation
Example:
Suppose branching x1 ≡ True yields x2 ≡ True.
Suppose branching x1 ≡ False also yields x2 ≡ True.
Taking the intersection, we yield x2 ≡ True from here on.

Overview Definitions State of the art Going forward

k-Saturation

Note: Saturate(0,E) = 0-Saturate(E)

Algorithm 2 Saturate(k, E)

1: C ← equivalence classes of E . 1 representative per class
2: for x , y ∈ C , x 6= y do
3: Ex≡y ← Saturate(k − 1, E with x ≡ y)
4: Ex≡y ← Saturate(k − 1, E with x ≡ y)
5: if Ex≡y has Contradiction then E ← Ex≡y
6: else if Ex≡y has Contradiction then E ← Ex≡y
7: else E ← Ex≡y ∩ Ex≡y . Dilemma rule
8: end if
9: end for

10: return E

Overview Definitions State of the art Going forward

Stalmarck’s method

Breadth first search using k-Saturation and dilemma rule
E is a set of equivalent classes of triples converted from ¬F

Algorithm 3 Stalmarck(F)

1: k ← 0
2: loop
3: E’ ← Saturate(k ,E)
4: if E’ is contradictory then
5: return F is a tautology
6: else if E’ has only 2 eq classes (True and False) then
7: return Assignment based on E ′

8: end if
9: k ← k + 1 . Increment k

10: end loop

Overview Definitions State of the art Going forward

Example with 0-Saturation

ID Semantic meaning
0 False
1 True
2i xi

2i+1 xi
16, 17 x1 ∨ x2

18, 19 x1 ∧ ¬x2

20, 21 x1 ⊕ x2

22, 23 x3 ∨ x4

24, 25 23 ∨ x5

26, 27 x3 ∧ x5

28, 29 7 ≡ 17
30, 31 9 ≡ 19
32, 33 11 ≡ 21
34, 35 13 ≡ 25
36, 37 15 ≡ 27

[0, 28, 30, 32, 34, 36]
[1, 29, 31, 33, 35, 37]

[6, 16][7, 17]
[8, 18][9, 19]

[10, 20][11, 21]
[12, 24][13, 25]
[14, 26][15, 27]

[2][3][4][5][22][23]

Suppose we set x6 = 1, x7 = 0,
Merge {13, 14} with 1
Merge {12, 15} with 0 (Shadow)

[0, 12, 15, 24, 27, 28, 30, 32, 34, 36]
[1, 13, 14, 25, 26, 29, 31, 33, 35, 37]

[6, 16][7, 17]
[8, 18][9, 19]

[10, 20][11, 21]
[2][3][4][5][22][23]

No applicable simple rule!

Overview Definitions State of the art Going forward

Example with 0-Saturation

ID Semantic meaning
0 False
1 True
2i xi

2i+1 xi
16, 17 x1 ∨ x2

18, 19 x1 ∧ ¬x2

20, 21 x1 ⊕ x2

22, 23 x3 ∨ x4

24, 25 23 ∨ x5

26, 27 x3 ∧ x5

28, 29 7 ≡ 17
30, 31 9 ≡ 19
32, 33 11 ≡ 21
34, 35 13 ≡ 25
36, 37 15 ≡ 27

Guess x3 ≡ True,
Merge 7 with 1
Merge 6 with 0 (Shadow)

[0, 6, 28, 30, 32, 34, 36]
[1, 7, 29, 31, 33, 35, 37]

[8, 18][9, 19]
[10, 20][11, 21]
[12, 24][13, 25]
[14, 26][15, 27]

[2][3][4][5][22][23]

After 0-saturation:

[0, 2, 4, 6, 9, 11, 12, 15, 16, 19, 21, 22, 24, 27, 28, 30, 32, 34, 36]
[1, 3, 5, 7, 8, 10, 13, 14, 17, 18, 20, 23, 25, 26, 29, 31, 33, 35, 37]

Satisfying assignment:
x1 = True, x2 = True

Overview Definitions State of the art Going forward

Notable implementations and papers

Stalmarck implementation 404 Not Found

Tutorial Mary Sheeran, Gunnar Stalmarck. A Tutorial on
Stalmarck’s Proof Procedure for Propositional Logic

Thesis Jakob Nordström. Stalmarcks Method versus
Resolution: A Comparative Theoretical Study

Generalization Aditya Thakur, Thomas Reps. A Generalization of
St̊aalmarcks Method

Overview Definitions State of the art Going forward

Summary

Today:

Introduction to SAT
What is SAT?
Why is SAT hard?
Why is SAT interesting?

State-of-the-art SAT solvers
DPLL + CDCL (Depth first)
Stalmarck (Breadth first)

Sneak peek at our work in this area

What’s next?

Specialised solvers for each problem class

Combination of depth-first and breadth-first

Parallelism

Let me know if you have any ideas/questions! ,

Overview Definitions State of the art Going forward

For fun

Moral of the story: Don’t cheat on someone who knows counting!
Source: http://spikedmath.com/390.html

http://spikedmath.com/390.html

DIMACS

x1, x2, x3, x4, x5, x6, x7 ∈ {0, 1}
Unknown: x1, x2, x3, x4, x5

Observed: x6, x7

Model
x1 : Real unknown
x2 : Real unknown
x3 : x1 ∨ x2

x4 : x1 ∧ ¬x2

x5 : x1 ⊕ x2

x6 : ¬x3 ∨ ¬x4 ∨ ¬x5

x7 : x3 ∧ x5

c DIMACS
p cnf 7 19
c x3 := x1 or x2
-3 1 2 0
3 -1 0
3 -2 0
c x4 := x1 and -x2
4 -1 2 0
-4 1 0
-4 -2 0
c x5 := x1 xor x2
-5 1 2 0
-5 -1 -2 0
5 -1 2 0
5 1 -2 0
c x6 := -x3 or -x4 or -x5
-6 -3 -4 -5 0
6 3 0
6 4 0
6 5 0
c x7 := x3 and x5
7 -3 -5 0
-7 3 0
-7 5 0
c Observations
6 0
7 0

x3 : x1 ∨ x2

x4 : x1 ∧ x2

x5 : x1 ⊕ x2

x6 : x3 ∨ x4 ∨ x5

x7 : x3 ∧ x5

Observations

DPLL on DIMACS

c DIMACS
p cnf 7 19
c x3 := x1 or x2
-3 1 2 0
3 -1 0
3 -2 0
c x4 := x1 and -x2
4 -1 2 0
-4 1 0
-4 -2 0
c x5 := x1 xor x2
-5 1 2 0
-5 -1 -2 0
5 -1 2 0
5 1 -2 0
c x6 := -x3 or -x4 or -x5
-6 -3 -4 -5 0
6 3 0
6 4 0
6 5 0
c x7 := x3 and x5
7 -3 -5 0
-7 3 0
-7 5 0
c Observations
6 0
7 0

c DIMACS
p cnf 7 19
c x3 := x1 or x2
-3 1 2 0
3 -1 0
3 -2 0
c x4 := x1 and -x2
4 -1 2 0
-4 1 0
-4 -2 0
c x5 := x1 xor x2
-5 1 2 0
-5 -1 -2 0
5 -1 2 0
5 1 -2 0
c x6 := -x3 or -x4 or -x5
F -3 -4 -5 0
T 3 0
T 4 0
T 5 0
c x7 := x3 and x5
T -3 -5 0
F 3 0
F 5 0
c Observations
6 0
7 0

DPLL on DIMACS

c DIMACS
p cnf 7 19
c x3 := x1 or x2
-3 1 2 0
3 -1 0
3 -2 0
c x4 := x1 and -x2
4 -1 2 0
-4 1 0
-4 -2 0
c x5 := x1 xor x2
-5 1 2 0
-5 -1 -2 0
5 -1 2 0
5 1 -2 0
c x6 := -x3 or -x4 or -x5
-6 -3 -4 -5 0
6 3 0
6 4 0
6 5 0
c x7 := x3 and x5
7 -3 -5 0
-7 3 0
-7 5 0
c Observations
6 0
7 0

c DIMACS
p cnf 7 19
c x3 := x1 or x2
-3 1 2 0
3 -1 0
3 -2 0
c x4 := x1 and -x2
4 -1 2 0
-4 1 0
-4 -2 0
c x5 := x1 xor x2
-5 1 2 0
-5 -1 -2 0
5 -1 2 0
5 1 -2 0
c x6 := -x3 or -x4 or -x5
F -3 -4 -5 0
T 3 0
T 4 0
T 5 0
c x7 := x3 and x5
T -3 -5 0
F 3 0
F 5 0
c Observations
6 0
7 0

DPLL on DIMACS

c DIMACS
p cnf 7 19
c x3 := x1 or x2
-3 1 2 0
3 -1 0
3 -2 0
c x4 := x1 and -x2
4 -1 2 0
-4 1 0
-4 -2 0
c x5 := x1 xor x2
-5 1 2 0
-5 -1 -2 0
5 -1 2 0
5 1 -2 0
c x6 := -x3 or -x4 or -x5
-6 -3 -4 -5 0
6 3 0
6 4 0
6 5 0
c x7 := x3 and x5
7 -3 -5 0
-7 3 0
-7 5 0
c Observations
6 0
7 0

c DIMACS
p cnf 7 19
c x3 := x1 or x2
F 1 2 0
T -1 0
T -2 0
c x4 := x1 and -x2
4 -1 2 0
-4 1 0
-4 -2 0
c x5 := x1 xor x2
F 1 2 0
F -1 -2 0
T -1 2 0
T 1 -2 0
c x6 := -x3 or -x4 or -x5
F -4 F 0
T 3 0
T 4 0
T 5 0
c x7 := x3 and x5
T -3 -5 0
F 3 0
F 5 0
c Observations
6 0
7 0

DPLL on DIMACS

c DIMACS
p cnf 7 19
c x3 := x1 or x2
-3 1 2 0
3 -1 0
3 -2 0
c x4 := x1 and -x2
4 -1 2 0
-4 1 0
-4 -2 0
c x5 := x1 xor x2
-5 1 2 0
-5 -1 -2 0
5 -1 2 0
5 1 -2 0
c x6 := -x3 or -x4 or -x5
-6 -3 -4 -5 0
6 3 0
6 4 0
6 5 0
c x7 := x3 and x5
7 -3 -5 0
-7 3 0
-7 5 0
c Observations
6 0
7 0

c DIMACS
p cnf 7 19
c x3 := x1 or x2
F 1 2 0
T -1 0
T -2 0
c x4 := x1 and -x2
4 -1 2 0
-4 1 0
-4 -2 0
c x5 := x1 xor x2
F 1 2 0
F -1 -2 0
T -1 2 0
T 1 -2 0
c x6 := -x3 or -x4 or -x5
F -4 F 0
T 3 0
T 4 0
T 5 0
c x7 := x3 and x5
T -3 -5 0
F 3 0
F 5 0
c Observations
6 0
7 0

DPLL on DIMACS

c DIMACS
p cnf 7 19
c x3 := x1 or x2
-3 1 2 0
3 -1 0
3 -2 0
c x4 := x1 and -x2
4 -1 2 0
-4 1 0
-4 -2 0
c x5 := x1 xor x2
-5 1 2 0
-5 -1 -2 0
5 -1 2 0
5 1 -2 0
c x6 := -x3 or -x4 or -x5
-6 -3 -4 -5 0
6 3 0
6 4 0
6 5 0
c x7 := x3 and x5
7 -3 -5 0
-7 3 0
-7 5 0
c Observations
6 0
7 0

c DIMACS
p cnf 7 19
c x3 := x1 or x2
F 1 2 0
T -1 0
T -2 0
c x4 := x1 and -x2
F -1 2 0
T 1 0
T -2 0
c x5 := x1 xor x2
F 1 2 0
F -1 -2 0
T -1 2 0
T 1 -2 0
c x6 := -x3 or -x4 or -x5
F -4 F 0
T 3 0
T 4 0
T 5 0
c x7 := x3 and x5
T -3 -5 0
F 3 0
F 5 0
c Observations
6 0
7 0

DPLL on DIMACS

c DIMACS
p cnf 7 19
c x3 := x1 or x2
-3 1 2 0
3 -1 0
3 -2 0
c x4 := x1 and -x2
4 -1 2 0
-4 1 0
-4 -2 0
c x5 := x1 xor x2
-5 1 2 0
-5 -1 -2 0
5 -1 2 0
5 1 -2 0
c x6 := -x3 or -x4 or -x5
-6 -3 -4 -5 0
6 3 0
6 4 0
6 5 0
c x7 := x3 and x5
7 -3 -5 0
-7 3 0
-7 5 0
c Observations
6 0
7 0

c DIMACS
p cnf 7 19
c x3 := x1 or x2
F 1 2 0
T -1 0
T -2 0
c x4 := x1 and -x2
F -1 2 0
T 1 0
T -2 0
c x5 := x1 xor x2
F 1 2 0
F -1 -2 0
T -1 2 0
T 1 -2 0
c x6 := -x3 or -x4 or -x5
F -4 F 0
T 3 0
T 4 0
T 5 0
c x7 := x3 and x5
T -3 -5 0
F 3 0
F 5 0
c Observations
6 0
7 0

DPLL on DIMACS

c DIMACS
p cnf 7 19
c x3 := x1 or x2
-3 1 2 0
3 -1 0
3 -2 0
c x4 := x1 and -x2
4 -1 2 0
-4 1 0
-4 -2 0
c x5 := x1 xor x2
-5 1 2 0
-5 -1 -2 0
5 -1 2 0
5 1 -2 0
c x6 := -x3 or -x4 or -x5
-6 -3 -4 -5 0
6 3 0
6 4 0
6 5 0
c x7 := x3 and x5
7 -3 -5 0
-7 3 0
-7 5 0
c Observations
6 0
7 0

After repeatedly using unit
propagation and simplification:
α(x4) = 0
α(x5) = 1
α(x6) = 1
α(x7) = 1

CNF reduces to:
(x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x1 ∨ x2)

Perform branching to solve:
α(x1) = 0
α(x2) = 1

	Overview
	Definitions
	State of the art
	Going forward
	Appendix

